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Abstract

In this paper, a new composite thin wall beam element of arbitrary cross-section with open or closed contour is

developed. The formulation incorporates the effect of elastic coupling, restrained warping, transverse shear deformation

associated with thin walled composite structures. A first order shear deformation theory is considered with the beam

deformation expressed in terms of axial, spanwise and chordwise bending, corresponding shears and twist. The for-

mulated locking free element uses higher order interpolating polynomial obtained by solving static part of the coupled

governing differential equations. The formulated element has super convergent properties as it gives the exact elemental

stiffness matrix. Static and free vibration analyses are performed for various beam configuration and compared with

experimental and numerical results available in current literature. Good correlation is observed in all cases with ex-

tremely small system size. The formulated element is used to study the wave propagation behavior in box beams

subjected to high frequency loading such as impact. Simultaneous existence of various propagating modes are

graphically captured. Here the effect of transverse shear on wave propagation characteristics in axial and transverse

directions are investigated for different ply layup sequences.
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1. Introduction

Composites are being used widely as construction material in aircraft industries because of their high

strength to weight ratio, increased fatigue life and improved damage tolerant nature. Thin walled structures

are integral parts of an aircraft. In many structures like rotor blades, wing spars etc they can be modeled as

one dimensional beam as the sectional dimensions are much small compared to the length. Several non-

classical behavior are exhibited by thin walled composite structures which includes the effect of elastic
coupling, transverse shear deformation and restrained torsional warping. These characteristics can be

exploited to improve efficiency through proper modeling.
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The influence of transverse shear deformation cannot be neglected even in comparatively slender

composite beams because of low shear modulus to direct modulus ratio (Davalos et al., 1994; Kant and

Gupta, 1988). The effects are more significant for high frequency responses, where Euler Bernoulli beam

theory (EBT) gives exorbitantly high wave speeds. In thin walled composite beam, the end restrains causes
non uniform out-of-plane torsional warping as opposed to Saint Venant�s assumptions. This effect is
predominant in open section beam and in such cases Vlasov theory is normally adopted to incorporate

restrained warping effect, which causes considerable change in the effective torsional stiffness.

The box beam is normally analyzed using a 1-D mathematical model, but representing 3-D motion. 1-D

approximations are associated with assumption of local displacements in terms of generalized beam dis-

placements namely extension, bending in two directions, shear in two directions and twist. A survey of

existing numerical and analytical thin walled composite beam theories was done by Jung et al. (1999a,b)

and Volovoi et al. (2001). A variational-asymptotic approach has been adopted by several researchers for
the above modeling problem. It helps in an efficient reduction of 3-D elasticity problem to 1-D beam

problem. Analytical cross-sectional models based on variational- asymptotic formulation were presented by

Berdichevsky et al. (1992), Badir et al. (1993) and Volovoi and Hodges (2002). Apart from the analytical

modeling of the beam cross-section, asymptotically correct finite element modeling techniques has also been

developed. VABS (Variational Asymptotic Beam Section Analysis) was developed by Cesnik and Hodges

(1997) which derive the cross-sectional stiffness through finite element discretization. A finite element based

cross-sectional analysis using variational asymptotic method and incorporating transverse shear effect is

presented by Popescu and Hodges (1999). A first order shear deformable analytical cross-sectional mod-
eling technique was proposed by Jung et al. (2002) without neglecting in-plane bending moments.

In first order shear deformation theory (FSDT) and higher order shear deformation theories (HSDT),

finite element formulation requires Co continuous elements for independent interpolation of transverse

displacement and slope. Shear constraints are always associated with these Co elements. When thin beams

are discretized using such elements, they do not yield zero shear strains. This is defined as the shear locking

problem. A shear locked element causes considerable under estimation of deformation. With the above

inconsistent formulation, the problem of shear locking can be eliminated using selective or reduced inte-

gration (Averill and Reddy, 1990).
All constraint media problems, like shear locking problem leads to two sets of stiffness matrix. One from

unconstrained strain field and the other from the constrained strain field. For shear deformable elements,

the bending stiffness matrix ½KB� comes from the unconstrained strain field, while the shear stiffness matrix
½KS� comes from the constrained strain field. Matrix ½KS� is also called the Penalty matrix. The problem is
thus reduced to solving the matrix equation
½½KB� þ a½KS��fug ¼ ff g ð1Þ
where fug and ff g are the nodal displacements and forces and a is the penalty parameter. In the penalty
limit as the beam becomes thin, a value becomes very large and for accurate solution, ½KS� requires to be
singular. One way of eliminating the problem is to perform reduced integration on the penalty matrix ½KS�
to make it rank deficient. This ensures that ½KS� is singular and proper solutions can be obtained. Hence,
numerical integration plays a crucial role in getting proper solutions in the constrained media problems.

Consistent finite element can be alternatively formulated using interpolating polynomials that are exact

solutions to the governing equations. This approach was implemented to obtain shape functions for an

isotropic three-dimensional Timoshenko beam (Bazoune et al., 2003) and in deriving exact stiffness matrix

in higher order isotropic beam (Eisenberger, 2003), in FSDT asymmetric composite beams (Chakraborty

et al., 2001), for higher order isotropic rod (Gopalakrishnan, 2000), for first order shear deformable iso-

tropic beams (Friedman and Kosmatka, 1993), for first and higher order shear deformable isotropic beams

(Khedir and Reddy, 1997; Reddy, 1997). In these elements, some constants of the interpolating polynomials
are dependent on material and cross-sectional properties. Here, the degrees of interpolation functions
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depends on the orders of governing equations and as the beam becomes thin, all these material dependent

constants transform themselves in such a manner that elementary solutions are recovered. The advantage is

that the user need not know whether the shear deformation is significant. With similar physical implication,

interpolation functions in terms of series were used in (Eisenberger, 1994) that reduced to continuum
solution when higher number terms were considered in the solution. In this paper, this approach is adopted

to derive the exact stiffness matrix of a thin walled composite beam.

In the present paper a generic composite thin walled beam element having arbitrary cross-section with

open and closed contour is developed. The element uses higher order interpolating polynomials that are

derived by solving the static homogeneous coupled governing differential equation and hence predicts the

exact elemental stiffness matrix. Each node has 6 degrees of freedom including extension, two in bending in

spanwise and chordwise directions, corresponding shears and twist. First order theory is used for transverse

shear deformation and out-of-plane torsional warping is modeled using Vlasov theory. Higher order
interpolating polynomial for twist eliminates the need of separate degree of freedom for restrained torsional

warping resulting in 6 · 6 elemental stiffness matrix compared to 7 · 7 stiffness matrix required by con-
ventional finite element.

The dynamic analysis of thin walled composite beams are generally performed by extending the cross-

sectional models, particularly to study the effect of various cross-sectional parameters, ply layup sequences

on the free vibration responses. Free vibration analyses of composite beams was done by Hodges et al.

(1991) and Song and Librescu (1997) for non rotating and closed cross-section rotating beams respectively.

They studied the influence of ply orientation and elastic couplings on natural frequencies. Jung et al. (2001)
performed dynamic analyses of rotating and non rotating beam from an analytical cross-sectional model

proposed by Jung et al. (1999a,b). Effect of wall thickness and transverse shear on natural frequencies was

discussed.

The modeling approach can be briefly outlined as (1) local displacements are obtained from generalized

beam displacements, which are functions of spanwise coordinate x and time t; (2) plane stress assumption is
used to derive the constitutive relation; (3) strain and kinetic energies are evaluated in terms of beam

displacements; (4) Hamilton�s principle is used to derive the governing differential equations; (5) The static
homogeneous differential equations are solved to obtain higher order shape functions; (6) the derived shape
functions results in exact elemental stiffness matrix and an approximate consistent mass matrix. The for-

mulated element is used to study the static and free vibration behavior of various flat and box beam

configurations. The beams used for numerical experiments has varied material and geometric properties

exhibiting different elastic coupling.

Composite beam structures subjected to high velocity impact load vibrates at higher modes that includes

various local 3-D modes, apart from the beam modes. Very few literature are available in this area though

such structures may be very often subjected to highly transient loading such as tool drop and other kind of

impact. These relates to wave propagation problems and can be differentiated from conventional dynamic
response problem by the (1) high frequency content of loading history and (2) phase transformation during

propagation. The dynamics of higher order beam structures subjected to high frequency loading or impact

introduces certain effect which are absent in their elementary counterparts. These effects may produce new

propagating modes. Finite element formulation for wave propagation problems require large system size to

capture all the higher modes as the load has a high frequency content. Hence the element size has to be

comparable to wavelengths, which are very small at high frequencies. These problems are usually solved in

the frequency domain and one such method is the spectral element method (SEM). SEM has been used for

wave propagation problem in isotropic Timoshenko beam (Gopalakrishnan et al., 1992) and in composite
Euler–Bernoulli beam (Mahapatra et al., 2000). Essential features of beam transient dynamics can be more

easily captured using SEM. However, spectral element formulation, which is based on exact solutions of the

governing wave equations in the transformed frequency domain, is available only for few structural ele-

ments like rods, beams, cylinders etc. As stated earlier, impact loads with high frequency content excites
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many local 3-D modes, even in beam like structures. Thus the dynamic model of the beam should be

capable of capturing these 3-D modes. Use of 3-D finite element for such problem is not computationally

viable. Efficient cross-sectional models e.g. VABS can produce accuracy comparable to 3-D finite element

(Yu et al., 2002). Such cross-sectional stiffness model can be used in beam analysis that can decrease the
system size considerably. Though the present element formulation is not capable of capturing the 3-D

effects, wave propagation analysis are performed to get an insight into the high frequency response of

composite thin walled structures and effects of various design parameters on it. In this paper, wave

propagation characteristics in longitudinal and transverse directions are studied for box beams with dif-

ferent ply orientation and is compared with EBT neglecting the effect of transverse shear. One of the

fundamental feature associated with the mechanics of the symmetric/antisymmetric box beam is the exis-

tence of axial-shear/axial-torsion coupling in axial response and bending-torsion/ bending-shear coupling in

flexural response. These are graphically captured using a high frequency modulated pulse.
This paper is organized as follows. First the governing equations for a thin walled beam of arbitrary

cross-section is derived using Hamilton�s principle. The finite element formulation is given next followed by
numerical experiments involving static, free vibration and wave propagation analysis. The numerical results

are compared with the results available in the existing literature. The paper ends with some important

conclusions and future scope of further studies in making faster and cost effective finite element analysis.
2. Governing differential equation for a thin-walled beam

From the geometrical consideration and assuming in-plane deformation to be negligible, the beam

displacement field can be written as
w ¼ voz;s 	 woy;s 	 qw ð2Þ

v ¼ voy;s þ woz;s þ rw ð3Þ

u ¼ uo þ zhy þ yhz 	 uw;x ð4Þ
where uo, vo, wo are the displacements in x, y, z directions. w, hy , hz are the rotations about x, y, z directions
(see Fig. 1). The torsional warping function u is expressed as (Megson (1974))
u ¼
Z s

0

rds	 2Ac
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Fig. 1. Coordinate system and generalized beam displacements.
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for closed cross-section, where t is the wall thickness, Ac is the cross-sectional area enclosed by mid line
contour, G is the shear modulus, r is the radius, s is the tangential coordinate and n is the normal co-
ordinates. For open contours, neglecting secondary warping, u is
u ¼
Z s

0

rds
Strain displacement relation are derived using Eqs. (2)–(4),
exx ¼ ou=ox ¼ uo; xþ zhy ; xþ yhz; x	 uw;xx ð5Þ

cxs ¼ ou=osþ ov=ox ¼ csxs þ ctxs ¼ fðwo; xþ hyÞz;s þ ðhz þ vo; xÞy;sg þ fðr 	 u;sÞw;xg ð6Þ

cxn ¼ ou=onþ ow=ox ¼ csxn þ ctxn ¼ fðhzy;n 	 wo; xy;sÞ þ ðhyz;n þ vo; xz;sÞg 	 fðqþ u;nÞw;xg ð7Þ

where exx is the normal strain and cxs, cxn are the shear strains. c

t
xn can be neglected as torsional displacement

do not contribute to the shear strain in transverse direction (see Megson, 1974) and hence the transverse

shear cxn can be assumed to contain only csxn components.
In plane stress condition, the normal stress rss and the transverse shear stress ssn are assumed zero and

the constitutive model is obtained through plane stress reduction of 3-D constitutive law. Plane stress
assumption correlates better with experiment than plane strain assumption (Jung et al., 1999a,b).
rxx
sxs
sxn

8<
:

9=
; ¼

Q11 Q16 0
Q16 Q66 0

0 0 Q55

2
4

3
5 �xx

cxs
cxn

8<
:

9=
; ð8Þ
The stiffness coefficients Qij are given by
Q11 ¼ Q11 	
Q212
Q22

; Q16 ¼ Q16 	
Q12Q26
Q22

Q66 ¼ Q66 	
Q226
Q22

; Q55 ¼ Q55 	
Q245
Q44

ð9Þ
where Qij are the transformed stiffness coefficients (see Jones, 1975). Total strain and kinetic energies are

calculated as
P ¼ 1
2

Z L

0

Z
A
ðrxx�xx þ sxscxs þ sxncxnÞdAdx ð10Þ

T ¼ 1
2

q
Z L

0

Z
A
ð _u2o þ _v2o þ _w2oÞdAdx ð11Þ
where dA is the elemental area given by dsdn.
Using the Hamilton�s principle, the minimization of the above energy with respect to the six degree

of freedom ðuo; vo;wo;w; hy ; hzÞ will give the six highly coupled differential equation, which are given by

Io€uo þ I1€hy þ I1€hz þ Iu€w;x 	 A11uo;xx 	 Ays16vo;xx 	 Azs16wo;xx þ Au11w;xxx 	 Aa16w;xx 	 B11hy;xx

	 Azs16hy;x 	 B11hz;xx 	 Ays16hz;x

¼ 0 ð12Þ

ðIz2s þ Iy2s Þ€vo 	 ðIzsq 	 IysrÞ€w 	 Ays16uo;xx 	 ðAy2s 66 þ Az2s 55Þvo;xx 	 ðAzsys66 	 Azsys55Þwo;xx þ Aysu16w;xxx

	 Aysa66w;xx 	 Bys16hy;xx 	 ðAzsys66 þ Azszn55Þhy;x 	 Bys16hz;xx 	 ðAy2s 66 þ Aynzs55Þhz;x
¼ 0 ð13Þ
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ðIz2s þ Iy2s Þ€wo þ ðIysq þ IzsrÞ€w 	 Azs16uo;xx 	 ðAyszs66 	 Ayszs55Þvo;xx 	 ðAz2s 66 þ Ay2s 55Þwo;xx þ Azsu16w;xxx

	 Azsa66w;xx 	 Bzs16hy;xx 	 ðAz2s 66 	 Ayszn55Þhy;x 	 Bzs16hz;xx 	 ðAyszs66 	 Aynys55Þhz;x
¼ 0 ð14Þ

	Iu€uo;x 	 ðIzsq 	 IysrÞ€vo þ ðIysq þ IzsrÞ€wo þ ðIq2 þ Ir2Þ€w 	 Iu2 €w;xx þ Izu€hy;x þ Iyu€hz;x 	 Au11uo;xxx

	 Aa16uo;xx 	 Aysu16vo;xxx 	 Aysa66vo;xx 	 Azsu16wo;xxx 	 Azsa66wo;xx þ Au211w;xxxx 	 Aa266w;xx 	 Bu11hy;xxx

	 ðBa16 þ Azsu16Þhy;xx 	 Azsa66hy;x 	 Bu11hz;xxx 	 ðBa16 þ Aysu16Þhz;xx 	 Aysa66hz;x

¼ 0 ð15Þ

I1€uo þ I2€hy þ eI2€hz 	 Izu€w;x 	 B11uo;xx þ Azs16uo;x 	 Bys16vo;xx þ ðAyszs66 þ Azszn55Þvo;x 	 Bzs16wo;xx

þ ðAz2s 66 þ Ayszn55Þwo;x þ Bu11w;xxx 	 ðAzsu16 þ Ba16Þw;xx þ Azsa66w;x 	 D11hy;xx þ ðAz2s 66 þ Az2n55Þhy
	 eD11hz;xx 	 ðBys16 	 Bzs16Þhz;x þ ðAyszs66 þ Aynzn55Þhz
¼ 0 ð16Þ

I1€uo 	 Iyu€w;x þ eI2€hy þ I2€hz 	 B11uo;xx þ Ays16uo;x 	 Bys16vo;xx þ ðAy2s 66 þ Azsyn55Þvo;x 	 Bzs16wo;xx

þ ðAz2s 66 	 Aysyn55Þwo;x þ Bu11w;xxx 	 ðAysu16 þ Ba16Þw;xx þ Aysa66w;x 	 eD11hy;xx 	 ðBzs16 	 Bys16Þhy;x
þ ðAzsys66 þ Aznyn55Þhy 	 D11hz;xx þ ðAyszs66 þ Aynzn55Þhz
¼ 0 ð17Þ
The nomenclature for the stiffness constants used are
Af ðs;nÞij Bf ðs;nÞij Bf ðs;nÞij Df ðs;nÞij Df ðs;nÞij eDf ðs;nÞij

h i
¼

Z
s

Z
n
Qijf ðs; nÞ½1; z; y; z2; y2; yz�dsdn ð18Þ
where
f ðs; nÞ 2 ½1; zs; ys; zn; yn; r; q;u; ðr 	 u;sÞ�
Here ðr 	 u;sÞ is taken equal to a.
Similarly, the inertial constants can be written as
Io I1 I1 I2 I2 eI2 If ðs;nÞ
� �

¼
Z
s

Z
n

q½1; z; y; z2; y2; yz; f ðs; nÞ�dsdn
The essential six forced boundary conditions obtained by the Hamilton�s principle, are
A11uo;x þ Ays16vo;x þ Azs16wo;x 	 Au11w;xx þ Aa16w;x þ B11hy;x þ Azs16hy þ B11hz;x þ Ays16hz ¼ P ð19Þ

Ays16uo;x þ ðAy2s 66 þ Az2s 55Þvo;x þ ðAzsys66 þ Azsys55Þwo;x 	 Aysu16w;xx þ Aysa66w;x þ Bys16hy;x

þ ðAzsys66 þ Azszn55Þhy þ Bys16hz;x þ ðAy2s 66 þ Aynzs55Þhz ¼ Vy ð20Þ

Azs16uo;x þ ðAyszs66 	 Ayszs55Þvo;x þ ðAz2s 66 þ Ay2s 55Þwo;xx 	 Azsu16w;xx þ Azsa66w;x þ Bzs16hy;x

þ ðAz2s 66 	 Ayszn55Þhy þ Bzs16hz;x þ ðAyszs66 	 Aynys55Þhz ¼ Vz ð21Þ
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Au11uo;xx þ Aa16uo;x þ Aysu16vo;xx þ Aysa66vo;x þ Azsu16wo;xx þ Azsa66wo;x 	 Au211w;xxx þ Aa266w;x

þ Bu11hy;xx þ ðBa16 þ Azsu16Þhy ; xþ Azsa66hy þ Bu11hz;xx þ ðBa16 þ Aysa66Þhz
¼ T ð22Þ

B11uo;x þ Bys16vo;x þ Bzs16wo;x 	 Bu11w;xx þ Ba16w;x þ D11hy;x þ Bzs16hy þ eD11hz;x þ Bys16hz ¼ My ð23Þ

B11uo;x þ Bys16vo;x þ Bzs16wo;x 	 Bu11w;xx þ Ba16w;x þ eD11hy;x þ Bzs16hy þ D11hz;xx þ Bys16hz ¼ Mz ð24Þ
These governing equation and the associated boundary conditions will be used for stiffness matrix for-

mulation. This is done by assuming appropriate polynomials for the displacement field based on the order
of the static part of the differential equation and substituting these back into the governing equation. In this

process certain constants can be eliminated and at the same time, certain constant become dependent

on material and sectional properties. The details of the formulation is given in the next section.
3. Finite element formulation

The finite element formulation begins by assuming the interpolating functions of appropriate order for
the six degrees of freedom. Looking at the governing equations (Eqs. (12)–(17)), we see that the axial

displacement ðuoÞ and the slopes about y- and z-axis (hy and hz) require quadratic polynomial, while the
lateral and transverse displacement (vo and wo) and the twist ðwÞ degrees of freedom require cubic poly-

nomials. Hence the interpolating polynomials for the six degrees of freedom can be assumed as
uoðxÞ ¼ a1 þ a2xþ a3x2

voðxÞ ¼ a4 þ a5xþ a6x2 þ a7x3

woðxÞ ¼ a8 þ a9xþ a10x2 þ a11x3

wðxÞ ¼ a12 þ a13xþ a14x2 þ a15x3

hyðxÞ ¼ a16 þ a17xþ a18x2

hzðxÞ ¼ a19 þ a20xþ a21x2

ð25Þ
In all, there are 21 constants to be evaluated. However there are only 12 boundary conditions (six at each
node, see Fig. 2). Hence there are nine constants which are not independent. These can be eliminated by

substituting the assumed displacement field in the governing equations (Eqs. (12)–(17)). Here we introduce

two vectors fag and faug, where fag containing all the unknown constants and faug is the vector containing
the dependent constants. These can be written as
fag ¼ fa1; a2; a4; a5; a8; a9; a12; a13; a16; a17; a19; a20g
faug ¼ fa3; a6; a7; a10; a11; a14; a15; a18; a21g

ð26Þ
First the assumed displacement field (Eq. (25)) is substituted in the six coupled governing differential

equation. This process enables to isolate the dependent constants faug from total number of constants fag.
That is the vector faug is expressed in terms of vector fag, through a transformation matrix. This can be
done as follows. On substitution of assumed displacement field in governing equation, the constants faug
can be expressed in terms of fag as
½A1�faug ¼ ½A2�fag or faug ¼ ½A�fag where ½A� ¼ ½A1�	1½A2� ð27Þ



z1 wo1

Vy1 vo1

P1
ψ1

z1
My1 θy1

T1 T2
ψ2

θ

2

X=0 X=L

V Y

X

Z

z1

uo1

Vz2
wo

Vy2

2

vo2

P2
ψ2

M Mz2 θz2

My2
θy

t

X

YZ

2h

2b
(a)

(b)

Fig. 2. (a) Thin walled box beam element and (b) nodal displacements and nodal forces.
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½A1� is of size 9· 9 while ½A2� is of size 9 · 12. One can see that these constants are functions of material and
cross-sectional properties of the thin walled beam. The explicit form of matrices ½A1� and ½A2� are given in
Appendix A. The matrix ½A� in Eq. (27) is evaluated by computing the inverse of matrix ½A1�, numerically.
On substitution of Eq. (27) in the governing equation (Eqs. (12)–(17)) the assumed polynomials for the six

displacement field can be written as
uoðxÞ ¼ ½ 1 x 0 0 0 0 0 0 0 0 0 0 �fag þ ½ x2 0 0 0 0 0 0 0 0 �½A�fag
voðxÞ ¼ ½ 0 0 1 x 0 0 0 0 0 0 0 0 �fag þ ½ 0 x2 x3 0 0 0 0 0 0 �½A�fag
woðxÞ ¼ ½ 0 0 0 0 1 x 0 0 0 0 0 0 �fag þ ½ 0 0 0 x2 x3 0 0 0 0 �½A�fag
wðxÞ ¼ ½ 0 0 0 0 0 0 1 x 0 0 0 0 �fag þ ½ 0 0 0 0 0 x2 x3 0 0 �½A�fag
hyðxÞ ¼ ½ 0 0 0 0 0 0 0 0 1 x 0 0 �fag þ ½ 0 0 0 0 0 0 0 x2 0 �½A�fag
hzðxÞ ¼ ½ 0 0 0 0 0 0 0 0 0 0 1 x �fag þ ½ 0 0 0 0 0 0 0 0 x2 �½A�fag

ð28Þ

The first task is to express the unknown coefficients in terms of the nodal displacement vector fuge which
is ordered as
fuge ¼ fuo1 ; vo1 ; wo1 ; w1; hy1 ; hz1 ; uo2 ; vo2 ; wo2 ; w2; hy2 ; hz2g
T

where uo1 , uo2 , vo1 , vo2 and wo1 , wo2 are the axial, lateral and transverse displacements at two nodes while w1,
w2, hy1 , hy2 and hz1 , hz2 are the respective slopes at the two nodes. This is done by substituting x ¼ 0 and
x ¼ L in Eq. (28), which can be written in matrix form as
fuge ¼ ½R�fag

Inverting the above equation, we get
fag ¼ ½R�	1fuge ¼ ½B�fuge ð29Þ
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Using the above equation in Eq. (28), we can write all the displacement field in terms of its nodal quantities,

which constitute the shape function of the displacement field. Thus
fug ¼ ½N �fuge; ½N � ¼ ½Nu Nv Nw Nw Nhy Nhz � ð30Þ
where ½Nu Nv Nw Nw Nhy Nhz � are the shape functions corresponding to the six displacement fields.
Next the six force boundary condition (Eqs. (19)–(24)) are considered and expressed in terms of nodal

force quantities. That is at x ¼ 0, we have P ð0Þ ¼ 	P1, Vyð0Þ ¼ 	Vy1, Vzð0Þ ¼ 	Vz1, T ð0Þ ¼ 	T1,
Myð0Þ ¼ 	My1 and Mzð0Þ ¼ 	Mz1 and at x ¼ L, we have P ðLÞ ¼ P2, VyðLÞ ¼ Vy2, VzðLÞ ¼ Vz2, T ðLÞ ¼ T2,
MyðLÞ ¼ My2 and MzðLÞ ¼ Mz2. Substituting these in Eqs. (19)–(24), we can write the nodal force vector

as
fF g ¼ ½C�fag ð31Þ

Substituting for fag from Eq. (29), we can write
fF g ¼ ½C�½B�fuge ) fF g ¼ ½K�fuge ð32Þ
where ½K� is the exact stiffness matrix, that is derived from the polynomials which exactly satisfy the

governing differential equation.

The consistent mass matrix is formulated using the material dependent shape functions (Eq. (30)).

That is
½M � ¼
Z L

0

Z
A

q½N �T½N �dnds ð33Þ
Substituting Eq. (30), expanding and integrating, the mass matrix can be written as
½M � ¼ Io

Z L

0

½Nu�T½Nu�dxþ ðIz2s þ Iy2s Þ
Z L

0

ð½Nv�T½Nv� þ ½Nw�T½Nw�Þdx	 ðIzsq 	 IysrÞ
Z L

0

ð½Nv�T½Nw�

þ ½Nw�T½Nv�Þdxþ ðIzsr þ IysqÞ
Z L

0

ð½Nw�T½Nw� þ ½Nw�T½Nw�Þdxþ ðIr2 þ Iq2Þ
Z L

0

½Nw�T½Nw�dx

þ I2

Z L

0

½Nhy �
T½Nhy �dxþ I2

Z L

0

½Nhz �
T½Nhz �dxþ I1

Z L

0

ð½Nhz �
T½Nu� þ ½Nu�T½Nhz �Þdx

þ I1

Z L

0

ð½Nhy �
T½Nu� þ ½Nu�T½Nhy �Þdxþ eI2

Z L

0

ð½Nhy �
T½Nhz � þ ½Nhz �

T½Nhy �Þdxþ I1u

Z L

0

ð½Nhy �
T½Nw;x

�

	 ½Nhy ;x �
T½Nw�Þdxþ I1u

Z L

0

ð½Nhz �
T½Nw;x

� 	 ½Nhz ;x �
T½Nw�Þdx	 Iu

Z L

0

ð½Nu�T½Nw;x
�

	 ½Nw�T½Nu;x �Þdx	 Iu2
Z L

0

½Nw�T½Nw;xx
�dx ð34Þ
Depending on the geometry of the cross-section, many of the constant in the mass matrix formulated above

vanishes resulting in a simpler form.
4. Numerical experiments

The formulated element has super convergent property as it uses exact solution to the governing
equation as its interpolation function. Hence, for point loads, one element between any two discontinuities

is sufficient to capture the exact response for static analysis. This results in substantial reduction in the
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system size. For dynamic analysis, consistent mass matrix formulated based on the above interpolation

functions are used. As a result, for a given discretization, the accuracy of the present formulation is ex-

pected to be superior compared to elements formulated based on conventional polynomial approximation.

This is because, the stiffness of the structure is exactly represented even though the inertial distribution is
approximate. Hence, good accuracy in dynamic analysis can be expected from this element using smaller

system sizes. The performance of the formulated element is examined for static, free vibration and wave

propagation problems.

Static and dynamic analyses of different box-beam, I-beam and rectangular flat beam section of

increasing complexities are performed. The beam configurations used in the experimentation is chosen to

have different material properties and ply layup sequences. Static and free vibration results are compared

with experimental, analytical and numerical results available in the literature.

The performance of the element for wave propagation problems can be judged by it�s ability to capture
higher order modes with very small system size. Hence, the numerical experiments for dynamic analysis is

so designed that, first the ability of the formulated element to accurately capture higher order modes

is examined before it�s use in wave propagation problems, where the frequency content of forcing function
is usually very high. The main aim of this numerical experiment is to show the effect of shear deformation

(in FSDT) on the overall transverse response in a box beam. In addition, simultaneous existence of various

propagating modes is graphically captured.

4.1. Static analysis

Static analysis is done for AS4/3501-6 graphite-epoxy box beams with three different symmetric and

antisymmetric ply layup sequences to test the performance of the formulated element. The response of these
cantilever beams of length 0.762 m. under unit static loads at the free end were experimentally investigated

by Chandra et al. (1990). The material properties and ply layup are provided in Tables 1 and 2 respectively.

The symmetric configuration ½h�S exhibit bending-torsion and extension-shear coupling while the anti-
symmetric configuration exhibit extension–torsion coupling. Figs. 3 and 4 show the induced twist due to tip

bending load and induced bending slope due to tip torque of a [45]S beam respectively, as a function of

spanwise coordinates. In both the cases, the present result correlates well with experimental data and the tip

deflection converges using just one element confirming the exactness of the stiffness matrix. In Fig. 3, the

result from the formulated element is also compared with the finite element analysis VABS by Cesnik and
Hodges (1997) and analytical solutions by Berdichevsky et al. (1992) and Smith and Chopra (1991). In Figs.

5 and 6 the effective torsional stiffnesses are presented for symmetric and antisymmetric sections respec-
Table 1

Properties of AS4/3501-6 graphite-epoxy (½h�S and ½h�AS) box-beams
Material properties

E11, psi (GPa) 20.59· 106 (141.9)
E22, psi (GPa) 1.42· 106 (9.78)
G12 ¼ G13, psi (GPa) 0.89· 106 (6.13)
G23, psi (GPa) 0.696· 106 (4.80)
m12 0.42

q 0.05224 lb/in3 (1449 kg/m3)

Dimensions

Width ð¼ 2bÞ, in. (mm) 0.953 (24.21)

Depth ð¼ 2hÞ, in. (mm) 0.53 (13.46)

Ply Thickness ð¼ tÞ, in. (mm) 0.005 (0.127)

No. of ply in each side 6



Table 2

Ply layup of AS4/3501-6 graphite-epoxy (½h�S and ½h�AS) box-beams
Beam configuration Top flange Bottom flange Left web Right web

Symmetric ½h�S
[15]S [15]6 [15]6 [15/)15]3 [15/)15]3
[30]S [30]6 [30]6 [30/)30]3 [30/)30]3
[45]S [45]6 [45]6 [45/)45]3 [45/)45]3

Antisymmetric ½h�AS
[15]AS [15]6 [)15]6 [15]6 [)15]6
[30]AS [0/30]3 [0/)30]3 [0/30]3 [0/)30]3
[45]AS [0/45]3 [0/)45]3 [0/45]3 [0/)45]3
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Fig. 3. Induced twist of [45]S box-beam due to unit tip bending load.
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tively. Comparisons provided with experimental results and analytically evaluated cross-sectional stiffnesses
by Jung et al. (2002), show good correlation with results generated from the single formulated element.

Cantilever graphite-epoxy I-beam having material properties as given in Table 1 (except G23 ¼ 0:89� 106
psi) and sectional dimension of 1.0 in. · 0.5 in. are experimented for static response. Ply layup sequence is
[(0�/90�)3/(15�)2]f for both the flanges, with 15� being the fiber orientation at the top two plies and [(0�/90�)4]w
for the web. This I-beam is well studied both experimentally and theoretically as open section cases and

details of the configuration are given in Chandra and Chopra (1991). These beam has warping restrain effect

at the ends and exhibit substantial increase in torsional rigidity according to Vlasov effect. Fig. 7 shows the

tip twist due to unit torsional load applied at the tip and the induced twist due to unit bending load at tip.
Comparisons are provided with the analytical results presented by Chandra and Chopra (1991) and

numerical results provided by Yu et al. (2002) using VABS. Good correlation is observed in both the cases.

The tip twists obtained using classical or St. Venant�s theory are presented to show the predominant effect
of restrained warping on the torsional behavior of open cross-section beams.
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4.2. Free vibration analysis

Natural frequencies of a rectangular flat graphite epoxy beam of 30� ply orientation with bending
torsion coupling are evaluated and compared with available experimental and theoretical results in Table 3.
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The beam has a width of 12.7 mm, thickness 3.175 mm and length 190 mm. Material properties are given in
Table 4. ST and TS represent spanwise bending-torsion mode with bending and torsion being predominant



Table 3

Natural frequencies (Hz) of 30� graphite epoxy rectangular flat beam

Mode Abarcar and Cuniff (1972) Suresh and

Nagaraj

(1996)

Hodges et al.

(1991)

Stemple and

Lee (1989)

Jung et al.

(2001)

Present

Experiment Analysis

1 (ST) 52.7 52.7 52.6 49.0 53.8 52.7 52.8

2 (C) – – – 195.6 214.1 210.7 210.0

3 (ST) 331.8 329.3 329.1 307.9 335.9 329.2 329.5

4 (ST) 924.7 915.9 918.0 869.1 941.1 918.6 916.1

5 (C) – – – 1215.2 1315.7 1320.4 1263.9

6 (ST) 1766.9 1767.0 1777.3 – 1707.0 1762.9 1756.0

7 (TS) 1827.4 1896.5 1891.6 1660.9 1881.1 1836.6 1858.0

8 (TS) 2984.0 2901.4 2929.9 – 3154.1 2944.6 2909.6

ST and TS represent spanwise bending-torsion mode with bending and torsion being predominant respectively and C is the chordwise

bending mode.

Table 4

Material properties of graphite-epoxy rectangular flat beam

Material properties

E11, psi (GPa) 18.73· 106 (129.1)
E22, psi (GPa) 1.364· 106 (9.408)
G12, psi (GPa) 0.7479· 106 (5.157)
G23, psi (GPa) 0.3686· 106 (2.541)
G23, psi (GPa) 0.6242· 106 (4.304)
m12 0.3

q 0.056 lb/in3 (1551 kg/m3)
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respectively and C is the chordwise bending mode. Free vibration results for the beam was obtained
experimentally by Abarcar and Cuniff (1972), analytically by Abarcar and Cuniff (1972) and Suresh and

Nagaraj (1996) and a finite element analysis by Stemple and Lee (1989). Jung et al. (2001) evaluated the

cross-sectional stiffness analytically and used 20 degrees of freedom beam elements to obtain the dynamic

characteristics. Results presented by Hodges et al. (1991) was derived from finite element cross-sectional

model using NABSA (Non Homogeneous Anisotropic Beam Section Analysis) and beam finite elements

for lengthwise discretization. The present results obtained using only 10 elements with a total of 60 degrees

of freedom, show good correlation with the available results from the literature.

Chandra and Chopra (1992) performed free vibration experiments for non-rotating AS4/3501-6 graphite
epoxy box beams (½h�S and ½h�AS) whose properties are described in Tables 1 and 2, respectively. In Fig. 8 the
fundamental frequencies of [15]AS, [30]AS and [45]AS are compared with above experimental results. The

analytical results were evaluated by Chandra and Chopra (1992) using Galerkin�s method. The present
results obtained with three formulated beam elements correlate well with available results.

Next, the free vibration behavior of the extension–torsion coupled box beam is investigated for which

the material properties and dimensions given in Table 5 is used. The beam has an antisymmetric config-

uration with [20/)70/20/)70/)70/20] ply layup in each wall. Table 6 gives the bending modes and first
two extension–torsion modes frequencies for this beam using the formulated element. The results are
compared with those presented by Hodges et al. (1991) using NABSA and TAIL for cross-sectional

stiffness analysis. S, C and TE are the spanwise bending, chordwise bending and torsion–extension modes

respectively. Frequencies obtained using TAIL requires 16 elements. The present results show good cor-

relation.
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Table 5

Properties of T300/5208 graphite-epoxy box-beam

Material properties

E11, psi (GPa) 21.3· 106 (146.79)
E22, psi (GPa) 1.6· 106 (11.03)
G12 ¼ G13, psi (GPa) 0.9· 106 (6.20)
G23, psi (GPa) 0.7· 106 (4.82)
m12 0.28

q 0.05764 lb/in3 (1599 kg/m3)

Dimensions

Width ð¼ 2bÞ, in. (mm) 1.32 (33.53)

Depth ð¼ 2hÞ, in. (mm) 0.66 (16.76)

Ply Thickness ð¼ tÞ, in. (mm) 0.0055 (0.1397)

Length in. (mm) 100 (2540)

Table 6

Natural frequencies (Hz) of T300/5208 graphite epoxy box-beam

Mode Hodges et al. (1991) Present (No. of Elements)

NABSA TAIL 2 3 5 10 15 20

1 (S) 3.00 3.09 3.05 3.05 (0.0%) 3.05 3.07 3.08 3.09

2 (C) 5.19 5.74 5.57 5.56 ()0.18%) 5.56 5.57 5.58 5.59

3 (S) 19.04 19.64 19.25 19.17 ()0.42%) 19.12 19.19 19.28 19.36

4 (C) 32.88 36.39 35.05 34.87 ()0.52%) 34.78 34.81 34.88 34.98

5 (S) 54.65 56.36 65.12 54.04 53.62 53.65 (0.06%) 53.89 54.12

6 (C) 93.39 103.29 118.58 98.07 97.13 96.90 ()0.24%) 97.08 97.34

1 (TE) 180.32 177.23 178.76 176.25 174.98 174.44 ()0.31%) 174.34 174.30

2 (TE) 544.47 535.15 606.68 576.44 542.27 527.62 524.93 ()0.51%) 523.98

S, C and TE are the spanwise bending, chordwise bending and torsion–extension modes respectively.
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As stated earlier and validated by the static analysis examples, the present formulation derives the exact

elemental stiffness matrix using higher order shape functions. Though the mass modeling is not exact and a

consistent mass matrix using the derived interpolating polynomials is formulated for dynamic analysis, the

present beam element is expected to exhibit improved convergence. In Table 6 the natural frequencies
obtained corresponding to the number of elements used are also presented, to illustrate the super con-

vergent properties of the formulated element. The percentage values given in the parenthesis give the

change in the frequencies due to mesh refinement. It is observed that the frequencies corresponding to

the first four bending modes nearly converges after two elements with a maximum difference of 0.52% at the

fourth frequency obtained using three elements.

Next, the ability of the element to capture higher modes with smaller system size, is investigated. This is

very crucial for the wave propagation analysis (treated next), where the frequency content is very high and

as a result all the higher order modes participate in the response.
An asymmetric graphite epoxy box beam configuration ([0/90]A) having material properties and

dimensions as in Table 1 is used. The results are compared with 3-D finite element simulation, which is

given in Table 7. The beam has a ply orientation of [03/903] and [903/03] in top and bottom flanges and

similar in left and right webs. Asymmetry in ply layup sequences produces extension shear coupling. The 3-

D finite element results are obtained using ANSYS general purpose program where eight noded brick

element is used to model the structure The model has a total of 15128 nodes and 3 · 15128 degrees of
freedom. The relative difference in the 14th and 15th frequency obtained using a finer 3-D mesh of 20008

nodes and 3 · 20008 degrees of freedom is 0.5%. Thus no further mesh refinement is done. The system size
required by the present element is 30 · 6. Frequencies with and without transverse shear are presented. The
EBT (without transverse shear) formulation is derived from present FSDT (with transverse shear) by

considering the stiffness constants i.e. Af ðs;nÞ55 (see Eq. (18)) corresponding to transverse shear to be infinite.
Bending and extensional frequencies shows good correlations and the effect of transverse shear is more

prominent at higher frequencies.
4.3. Wave propagation problem

In wave propagation the frequency content of the exciting force is very high. The response of the

structure to such loading extracts the participation of all the higher modes. Smaller element size is required

to match the small wavelengths at higher frequencies. This results in finer finite element modeling producing
Table 7

Natural frequencies (Hz) of AS4/3501-6 graphite epoxy [0/90]A box-beam

Mode Present 3-D FEM

With transverse shear Without transverse shear

1 (S) 31.02 31.06 30.99

2 (C) 49.17 49.34 49.19

3 (S) 192.55 194.57 187.22

4 (C) 301.63 308.75 298.13

6 (S) 531.18 473.02 494.34

7 (C) 817.54 862.40 794.24

11 (S) 1642.38 1757.35 1680.8

12 (E) 2107.28 2107.33 2111.7

14 (S) 2381.89 2619.31 2349.4

15 (C) 2409.78 2771.02 2418.0

16 (S) 3220.05 3321.34 3198.0

S and C are the spanwise and chordwise bending modes respectively.
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large system size. The amount of literature available for such wave propagation problems specially for box

beams is very scarce and to the author�s best knowledge can be said almost non-existent. In such situation,
it is necessary to examine the ability of the element to capture all the higher order modes in a model having

smaller system size. This was done in the previous example of the free vibration analysis section. The main
objectives here are the following: (1) To study the fundamental aspects of wave propagation in shear

flexible box beam as opposed to elementary box beam. (2) To graphically capture the various propagating
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Fig. 9. (a) Impact load and (b) Fourier transform of load.
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wave modes in a symmetric/antisymmetric box beam due to either bending-shear-torsion coupling or

extension-shear-torsion coupling. This feature, coupled with some of the fundamental aspects of wave

propagation in a shear flexible box beam, will enable us to ascertain the accuracy of the solution.
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Fig. 10. Longitudinal tip velocities of [0/90]A, [45]S, [15]AS box-beam due to tip impact load.
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4.3.1. Cantilever beam under tip impact load

Numerical experiments are performed on cantilever box beams with different ply orientation both with

and without considering the transverse shear effects to study the difference in wave propagation charac-

teristics of EBT and FSD beams.
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Fig. 12. Transverse tip velocity of a [45]S box-beam due to tip impact load.
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Three Graphite epoxy cantilever box beams [0/90]A, [45]S, [15]AS with material properties and dimensions

as in Table 1 are used for the numerical experiment. The exciting impact load shown in Fig. 9 has an

amplitude of 4.4 N and duration is of 50 ls with a very high frequency content of 44 kHz. The beams are
modeled with 1000 elements with 1000 · 6 degrees of freedom, where 6 is the band width. Newmarks time
integration is used with time increments of 1 ls.
Fig. 10 shows the longitudinal velocities measured at the tip due to impact load applied also applied at

tip in longitudinal direction. The effect of neglecting transverse shear in [45]S decreases the amplitude of

initial response to the load and also increases the velocity with the first reflection occurring around 40 ls
earlier than that with transverse shear while in [0/90]A, [15]AS the effect of neglecting transverse shear does

not produce any difference This observation is justified as [45]S beam has a prominent extension shear

coupling. Also, it is seen that longitudinal waves in [0/90]A and [15]AS beam travel much faster than [45]S
beam.
Figs. 11–13 are the transverse velocities at tip due to impact loading applied at tip in transverse direction

of [0/90]A, [45]S, [15]AS beams respectively. Neglecting transverse shear increases the velocity in all cases and

the effect is most prominent in [15]AS. Thus it can be concluded from the observations that FSDT predicts

lower wave speeds than EBT.
4.3.2. Response to modulated sinusoidal pulse

The aim of this experiment is to graphically capture various propagating modes in a box beam.

Depending on the ply orientation and stacking sequence, various elastic coupling are exhibited in a box

beam. The governing equation for the box beam, derived in Section 2 of this paper, showed that it is fourth

order in transverse displacements and twist, third order for slopes and axial displacement. Hence waves in

such systems are necessarily dispersive, that is the pulse changes its shape as it propagates. In order that all

the propagating modes are captured graphically, a pulse that travels non-dispersively is required. For this
purpose, a modulated sinusoidal pulse is used. Such a pulse has zero energy at all frequencies other than the

frequency at which the sine pulse is excited. Such pulses are extensively used in structural health monitoring

studies (Nag et al., 2002; Vald�es and Soutis, 2001; Lin and Yuan, 2001). As stated earlier in Section 1,
further refinement in the present beam formulation by using improved cross-sectional models are required

prior to such applications. This sinusoidal pulse modulated at a high frequency is allowed to propagate

through an infinite beam (Fig. 14). The beam is considered infinite in a sense that the boundary reflections

can be neglected within the time of observation. The graphite epoxy box beams ½h�AS and ½h�S with material
properties and dimensions as in Table 1 are used for this experiment. The modulated pulse is applied at
a point C in axial and transverse directions and the axial and transverse velocity are observed at a point D
Z

C D

L

x

Fig. 14. An infinite box beam to observe non-dispersively propagating modes.
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direction. Torsion modes are shown in magnified scales.

1512 M. Mitra et al. / International Journal of Solids and Structures 41 (2004) 1491–1518



250 350 450 550 650 750 850
–0.4

–0.2

0

0.2

0.4

Time (µ sec)

T
ra

ns
ve

rs
e 

V
el

oc
ity Shear

Flexure

Torsion

250 350 450 550 650 750 850
–0.4

–0.2

0

0.2

0.4

Time (µ sec)

T
ra

ns
ve

rs
e 

V
el

oc
ity

Shear

Flexure

Torsion

250 350 450 550 650 750 850
–0.4

–0.2

0

0.2

0.4

Time (µ sec)

T
ra

ns
ve

rs
e 

V
el

oc
ity

Shear

Flexure

Torsion

(a)

(b)

(c)

Fig. 17. Transverse velocities of (a) [15]S, (b) [30]S, (c) [45]S box-beam due to a sinusoidal pulse modulated at 110 kHz applied in

transverse direction. Shear modes are shown in magnified scales.
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Fig. 18. Transverse velocities of (a) [15]AS, (b) [30]AS, (c) [45]AS box-beam due to a sinusoidal pulse modulated at 110 kHz applied in

transverse direction. Shear modes and flexural mode in chordwise direction are shown in magnified scales.

1514 M. Mitra et al. / International Journal of Solids and Structures 41 (2004) 1491–1518



M. Mitra et al. / International Journal of Solids and Structures 41 (2004) 1491–1518 1515
on the infinite beam. The propagating length L is the distance between C and D. The beams of length 7.62

m are modeled with 5000 elements giving a system size of 6 · 5000. In all the cases responses are provided
for beams with three ply orientation to show the effect of ply angle on the various coupling.

In a symmetric ply configuration ½h�S, the extension is coupled with shear in chordwise direction. Thus
the axial velocity due to axial load will show two propagating modes. Fig. 15 shows the axial velocities for a

modulated sinusoidal pulse with a modulated frequency of 50 kHz applied in axial direction. In the figure,

the first blob is an axial mode, the second is the shear mode. The effect of shear coupling is more in [30]S and

[45]S beam. Similarly an axial excitation to an antisymmetric ply configuration ½h�AS gives extension torsion
coupling. This is clearly seen in Fig. 16 for the same modulated sinusoidal pulse. The first blob is the axial

mode while the second is the torsional mode. It is seen that extension–torsion coupling is strong only in

[15]AS here. The propagating distance is L ¼ 0:5334 m for both the above cases. In Figs. 17 and 18 the

transverse velocities due to a sinusoidal pulse with a modulated frequency of 110 kHz applied in transverse
direction is shown for symmetric and antisymmetric configurations respectively. The propagating lengths

are L ¼ 1:2192 m for ½h�S and L ¼ 0:9144 m for ½h�AS. ½h�S ply orientations has a torsion, flexure and shear
coupling and hence shows three propagating modes in Fig. 17. Similarly, four propagating modes can be

visualized for ½h�AS beam configuration having spanwise and chordwise shear and flexural coupling. From
Fig. 17, we see the bending-torsion coupling is very high in [45]S while for [15]S it is less.
5. Conclusion

This paper present a generic thin walled composite beam element of arbitrary cross-section with open or

closed contour. The refined element developed has super convergent property and is free from shear

locking. The user does not have to know the situation where the shear deformation is predominant as the

same element can be used for all situations. The formulation accounts for the non classical behaviors

including elastic coupling, transverse shear and restrained torsional warping. Modeling of transverse shear

deformation is based on FSDT and Vlasov theory is used for modeling of torsional warping. The element

formulated is validated with various experimental, analytical and numerical results available both for static
and dynamic cases. Various box beams and flat rectangular beam with different material properties and ply

layup sequences are used as test cases. In all cases good correlation has been observed. Wave propagation

analysis performed establish that effect of transverse shear is very pronounced at higher frequency ranges

and produces a non-negligible decrease in wave velocities particularly in transverse direction. The various

propagating coupling modes are graphically captured. The formulated beam element can be further refined

by improving the cross-sectional stiffness modeling to get responses more comparable to 3-D finite element

results. This refinement may help in more accurate high frequency or wave propagation analysis for various

applications.

Appendix A

The non zero elements of the matrix ½A1� and ½A2� in Eq. (27) are given as
A111 ¼ A11; A112 ¼ Ays16; A114 ¼ Azs16; A116 ¼ Aa16

A117 ¼ 	3Au11; A118 ¼ B11; A119 ¼ B11

A121 ¼ Ays16; A122 ¼ ðAy2s 66 þ Az2s 55Þ; A124 ¼ ðAzsys66 	 Azsys55Þ; A126 ¼ Aysa66

A127 ¼ 	3Aysu16; A128 ¼ Bys16; A129 ¼ Bys16
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A133 ¼ 3ðAy2s 66 þ Az2s 55Þ; A135 ¼ 3ðAzsys66 	 Azsys55Þ; A137 ¼ 3Aysa66

A138 ¼ ðAzsys66 þ Azszn55Þ; A139 ¼ ðAy2s 66 þ Azsyn55Þ

A141 ¼ Azs16; A142 ¼ ðAzsys66 	 Azsys55Þ; A144 ¼ ðAz2s 66 	 Ay2s 55Þ

A146 ¼ Azsa66; A147 ¼ 	3Azsu16; A148 ¼ Bzs16; A149 ¼ Bzs16

A153 ¼ 3ðAz2s 66 þ Ay2s 55Þ; A155 ¼ 3Azsa66; A157 ¼ 	3Au11

A158 ¼ ðAz2s 66 	 Aznys55Þ; A159 ¼ ðAzsys66 	 Aynys55Þ

A161 ¼ Aa16; A162 ¼ Aysa66; A163 ¼ 3Aysu16; A164 ¼ Azsa66

A165 ¼ 3Azsu16; A166 ¼ Aa266; A168 ¼ ðBa16 þ Azsu16Þ; A169 ¼ ðBa16 þ Aysu16Þ

A173 ¼ 3Aysa66; A175 ¼ 3Azsa66; A177 ¼ 3Aa266; A178 ¼ Azsa66; A179 ¼ Aysa66

A181 ¼ B11; A182 ¼ Bys16; A184 ¼ Bzs16; A186 ¼ ðAzsu16 þ Ba16Þ

A187 ¼ 	3Bu11; A188 ¼ D11; A189 ¼ eD11
A191 ¼ B11; A192 ¼ Bys16; A194 ¼ Bzs16; A196 ¼ ðAysu16 þ Ba16Þ

A197 ¼ 	3Bu11; A198 ¼ eD11; A199 ¼ D11
All other A1ij ¼ 0.

A219 ¼ 	0:5Azs16; A2111 ¼ 	0:5Ays16

A2210 ¼ 	0:5ðAzsys66 þ Azszn55Þ; A2212 ¼ 	0:5ðAy2s 66 þ Azsyn55Þ

A2410 ¼ 	0:5ðAz2s 66 	 Aznys55Þ; A2412 ¼ 	0:5ðAzsys66 	 Ayszn55Þ

A2610 ¼ 	0:5Azsa66; A2612 ¼ 	0:5Aysa66

A282 ¼ 0:5Azs16; A284 ¼ 0:5ðAzsys66 þ Azszn55Þ; A286 ¼ 0:5ðAz2s 66 þ Aznys55Þ

A288 ¼ 0:5Azsa66

A289 ¼ 0:5ðAz2s 66 þ Az2n55Þ; A2811 ¼ 0:5ðAzsys66 þ Aznys55Þ; A2812 ¼ 	0:5ðBys16 	 Bzs16Þ

A292 ¼ 0:5Ays16; A294 ¼ 0:5ðAy2s 66 þ Azsyn55Þ; A296 ¼ 0:5ðAz2s 66 	 Aysyn55Þ

A298 ¼ 0:5Aysa66

A299 ¼ 0:5ðAzsys66 þ Aznyn55Þ; A2910 ¼ 0:5ðBys16 	 Bzs16Þ; A2911 ¼ 0:5ðAzsys66 þ Ay2n55Þ
All other A2ij ¼ 0.
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