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Abstract

In this paper, a new composite thin wall beam element of arbitrary cross-section with open or closed contour is
developed. The formulation incorporates the effect of elastic coupling, restrained warping, transverse shear deformation
associated with thin walled composite structures. A first order shear deformation theory is considered with the beam
deformation expressed in terms of axial, spanwise and chordwise bending, corresponding shears and twist. The for-
mulated locking free element uses higher order interpolating polynomial obtained by solving static part of the coupled
governing differential equations. The formulated element has super convergent properties as it gives the exact elemental
stiffness matrix. Static and free vibration analyses are performed for various beam configuration and compared with
experimental and numerical results available in current literature. Good correlation is observed in all cases with ex-
tremely small system size. The formulated element is used to study the wave propagation behavior in box beams
subjected to high frequency loading such as impact. Simultaneous existence of various propagating modes are
graphically captured. Here the effect of transverse shear on wave propagation characteristics in axial and transverse
directions are investigated for different ply layup sequences.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Composites are being used widely as construction material in aircraft industries because of their high
strength to weight ratio, increased fatigue life and improved damage tolerant nature. Thin walled structures
are integral parts of an aircraft. In many structures like rotor blades, wing spars etc they can be modeled as
one dimensional beam as the sectional dimensions are much small compared to the length. Several non-
classical behavior are exhibited by thin walled composite structures which includes the effect of elastic
coupling, transverse shear deformation and restrained torsional warping. These characteristics can be
exploited to improve efficiency through proper modeling.
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The influence of transverse shear deformation cannot be neglected even in comparatively slender
composite beams because of low shear modulus to direct modulus ratio (Davalos et al., 1994; Kant and
Gupta, 1988). The effects are more significant for high frequency responses, where Euler Bernoulli beam
theory (EBT) gives exorbitantly high wave speeds. In thin walled composite beam, the end restrains causes
non uniform out-of-plane torsional warping as opposed to Saint Venant’s assumptions. This effect is
predominant in open section beam and in such cases Vlasov theory is normally adopted to incorporate
restrained warping effect, which causes considerable change in the effective torsional stiffness.

The box beam is normally analyzed using a 1-D mathematical model, but representing 3-D motion. 1-D
approximations are associated with assumption of local displacements in terms of generalized beam dis-
placements namely extension, bending in two directions, shear in two directions and twist. A survey of
existing numerical and analytical thin walled composite beam theories was done by Jung et al. (1999a,b)
and Volovoi et al. (2001). A variational-asymptotic approach has been adopted by several researchers for
the above modeling problem. It helps in an efficient reduction of 3-D elasticity problem to 1-D beam
problem. Analytical cross-sectional models based on variational- asymptotic formulation were presented by
Berdichevsky et al. (1992), Badir et al. (1993) and Volovoi and Hodges (2002). Apart from the analytical
modeling of the beam cross-section, asymptotically correct finite element modeling techniques has also been
developed. VABS (Variational Asymptotic Beam Section Analysis) was developed by Cesnik and Hodges
(1997) which derive the cross-sectional stiffness through finite element discretization. A finite element based
cross-sectional analysis using variational asymptotic method and incorporating transverse shear effect is
presented by Popescu and Hodges (1999). A first order shear deformable analytical cross-sectional mod-
eling technique was proposed by Jung et al. (2002) without neglecting in-plane bending moments.

In first order shear deformation theory (FSDT) and higher order shear deformation theories (HSDT),
finite element formulation requires C° continuous elements for independent interpolation of transverse
displacement and slope. Shear constraints are always associated with these C° elements. When thin beams
are discretized using such elements, they do not yield zero shear strains. This is defined as the shear locking
problem. A shear locked element causes considerable under estimation of deformation. With the above
inconsistent formulation, the problem of shear locking can be eliminated using selective or reduced inte-
gration (Averill and Reddy, 1990).

All constraint media problems, like shear locking problem leads to two sets of stiffness matrix. One from
unconstrained strain field and the other from the constrained strain field. For shear deformable elements,
the bending stiffness matrix [Kg] comes from the unconstrained strain field, while the shear stiffness matrix
[Ks] comes from the constrained strain field. Matrix [Kg] is also called the Penalty matrix. The problem is
thus reduced to solving the matrix equation

([Ks] + o[Ksl{u} = {/} (1)

where {u} and {f} are the nodal displacements and forces and « is the penalty parameter. In the penalty
limit as the beam becomes thin, « value becomes very large and for accurate solution, [Ks] requires to be
singular. One way of eliminating the problem is to perform reduced integration on the penalty matrix [Ks]
to make it rank deficient. This ensures that [Ks] is singular and proper solutions can be obtained. Hence,
numerical integration plays a crucial role in getting proper solutions in the constrained media problems.
Consistent finite element can be alternatively formulated using interpolating polynomials that are exact
solutions to the governing equations. This approach was implemented to obtain shape functions for an
isotropic three-dimensional Timoshenko beam (Bazoune et al., 2003) and in deriving exact stiffness matrix
in higher order isotropic beam (Eisenberger, 2003), in FSDT asymmetric composite beams (Chakraborty
et al., 2001), for higher order isotropic rod (Gopalakrishnan, 2000), for first order shear deformable iso-
tropic beams (Friedman and Kosmatka, 1993), for first and higher order shear deformable isotropic beams
(Khedir and Reddy, 1997; Reddy, 1997). In these elements, some constants of the interpolating polynomials
are dependent on material and cross-sectional properties. Here, the degrees of interpolation functions
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depends on the orders of governing equations and as the beam becomes thin, all these material dependent
constants transform themselves in such a manner that elementary solutions are recovered. The advantage is
that the user need not know whether the shear deformation is significant. With similar physical implication,
interpolation functions in terms of series were used in (Eisenberger, 1994) that reduced to continuum
solution when higher number terms were considered in the solution. In this paper, this approach is adopted
to derive the exact stiffness matrix of a thin walled composite beam.

In the present paper a generic composite thin walled beam element having arbitrary cross-section with
open and closed contour is developed. The element uses higher order interpolating polynomials that are
derived by solving the static homogeneous coupled governing differential equation and hence predicts the
exact elemental stiffness matrix. Each node has 6 degrees of freedom including extension, two in bending in
spanwise and chordwise directions, corresponding shears and twist. First order theory is used for transverse
shear deformation and out-of-plane torsional warping is modeled using Vlasov theory. Higher order
interpolating polynomial for twist eliminates the need of separate degree of freedom for restrained torsional
warping resulting in 6x6 elemental stiffness matrix compared to 7x7 stiffness matrix required by con-
ventional finite element.

The dynamic analysis of thin walled composite beams are generally performed by extending the cross-
sectional models, particularly to study the effect of various cross-sectional parameters, ply layup sequences
on the free vibration responses. Free vibration analyses of composite beams was done by Hodges et al.
(1991) and Song and Librescu (1997) for non rotating and closed cross-section rotating beams respectively.
They studied the influence of ply orientation and elastic couplings on natural frequencies. Jung et al. (2001)
performed dynamic analyses of rotating and non rotating beam from an analytical cross-sectional model
proposed by Jung et al. (1999a,b). Effect of wall thickness and transverse shear on natural frequencies was
discussed.

The modeling approach can be briefly outlined as (1) local displacements are obtained from generalized
beam displacements, which are functions of spanwise coordinate x and time #; (2) plane stress assumption is
used to derive the constitutive relation; (3) strain and kinetic energies are evaluated in terms of beam
displacements; (4) Hamilton’s principle is used to derive the governing differential equations; (5) The static
homogeneous differential equations are solved to obtain higher order shape functions; (6) the derived shape
functions results in exact elemental stiffness matrix and an approximate consistent mass matrix. The for-
mulated element is used to study the static and free vibration behavior of various flat and box beam
configurations. The beams used for numerical experiments has varied material and geometric properties
exhibiting different elastic coupling.

Composite beam structures subjected to high velocity impact load vibrates at higher modes that includes
various local 3-D modes, apart from the beam modes. Very few literature are available in this area though
such structures may be very often subjected to highly transient loading such as tool drop and other kind of
impact. These relates to wave propagation problems and can be differentiated from conventional dynamic
response problem by the (1) high frequency content of loading history and (2) phase transformation during
propagation. The dynamics of higher order beam structures subjected to high frequency loading or impact
introduces certain effect which are absent in their elementary counterparts. These effects may produce new
propagating modes. Finite element formulation for wave propagation problems require large system size to
capture all the higher modes as the load has a high frequency content. Hence the element size has to be
comparable to wavelengths, which are very small at high frequencies. These problems are usually solved in
the frequency domain and one such method is the spectral element method (SEM). SEM has been used for
wave propagation problem in isotropic Timoshenko beam (Gopalakrishnan et al., 1992) and in composite
Euler—Bernoulli beam (Mahapatra et al., 2000). Essential features of beam transient dynamics can be more
easily captured using SEM. However, spectral element formulation, which is based on exact solutions of the
governing wave equations in the transformed frequency domain, is available only for few structural ele-
ments like rods, beams, cylinders etc. As stated earlier, impact loads with high frequency content excites
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many local 3-D modes, even in beam like structures. Thus the dynamic model of the beam should be
capable of capturing these 3-D modes. Use of 3-D finite element for such problem is not computationally
viable. Efficient cross-sectional models e.g. VABS can produce accuracy comparable to 3-D finite element
(Yu et al., 2002). Such cross-sectional stiffness model can be used in beam analysis that can decrease the
system size considerably. Though the present element formulation is not capable of capturing the 3-D
effects, wave propagation analysis are performed to get an insight into the high frequency response of
composite thin walled structures and effects of various design parameters on it. In this paper, wave
propagation characteristics in longitudinal and transverse directions are studied for box beams with dif-
ferent ply orientation and is compared with EBT neglecting the effect of transverse shear. One of the
fundamental feature associated with the mechanics of the symmetric/antisymmetric box beam is the exis-
tence of axial-shear/axial-torsion coupling in axial response and bending-torsion/ bending-shear coupling in
flexural response. These are graphically captured using a high frequency modulated pulse.

This paper is organized as follows. First the governing equations for a thin walled beam of arbitrary
cross-section is derived using Hamilton’s principle. The finite element formulation is given next followed by
numerical experiments involving static, free vibration and wave propagation analysis. The numerical results
are compared with the results available in the existing literature. The paper ends with some important
conclusions and future scope of further studies in making faster and cost effective finite element analysis.

2. Governing differential equation for a thin-walled beam

From the geometrical consideration and assuming in-plane deformation to be negligible, the beam
displacement field can be written as

W=0VpZ5 — WoyJ - qlp (2)
U= on,s + WOZ,S + }"l// (3)
Uu=1u, +Zoy +y02 _(Plpx (4)

where u,, v,, w, are the displacements in x, y, z directions. v, 0,, 0, are the rotations about x, y, z directions
(see Fig. 1). The torsional warping function ¢ is expressed as (Megson (1974))

s Oos T ds ds
= — 24 .i L= — = —
@ /0 rds . Oos e 0 Gr

5 )

Fig. 1. Coordinate system and generalized beam displacements.
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for closed cross-section, where ¢ is the wall thickness, 4. is the cross-sectional area enclosed by mid line
contour, G is the shear modulus, r is the radius, s is the tangential coordinate and » is the normal co-
ordinates. For open contours, neglecting secondary warping, ¢ is

q):/rds
0

Strain displacement relation are derived using Egs. (2)—(4),

Eoe = OU/OX = 1y, x + 20, x + y0.,x — QY (5)
yxs = au/as + aU/ax = '));5 + y)’m = {(Woax + Gy)z.,s + (62 + anx)y.,s} + {(I" - (p,s)lrbx} (6)
’Vxn = au/an + aI/V/ax = y;n + ’y)tm = {(92}}-}’1 - WO?ny) + (9}’21” + UO’xZ-,A‘)} - {(q + (p,n)lp,x} (7)

where &,, is the normal strain and y,,, y,, are the shear strains. !, can be neglected as torsional displacement
do not contribute to the shear strain in transverse direction (see Megson, 1974) and hence the transverse
shear 7,, can be assumed to contain only y{, components.

In plane stress condition, the normal stress g, and the transverse shear stress 7, are assumed zero and
the constitutive model is obtained through plane stress reduction of 3-D constitutive law. Plane stress
assumption correlates better with experiment than plane strain assumption (Jung et al., 1999a,b).

Oxx Qll Qlé 0 Exx
Ts 0= | O O 0 Vs (8)
Txn 0 0 Q55 Van
The stiffness coefficients Q.j are given by
2
Q11:Q11*&7 Q16:Q16*%
On On )
@ :Q66_Q_§6 @ :QSS_%
66 Q22 ) 55 Q44

where Q;; are the transformed stiffness coefficients (see Jones, 1975). Total strain and kinetic energies are
calculated as

1 L
11 = 5 / /(O'xxexx + Txs Vs + Txnyxn) dA4dx (10)
0 J4

L
T:lp//(a§+b§+w§)d14dx (11)
2% Jo Ja

where d4 is the elemental area given by dsdn.
Using the Hamilton’s principle, the minimization of the above energy with respect to the six degree
of freedom (u,, v,, w,, ¥, 0,, 6,) will give the six highly coupled differential equation, which are given by

]oi.’a + 11 éy + iléz + I(/;lp’x - A]luo_LY - Ayvléuo‘xx - Aleéwo_,LY + A(p]ll//,xxx - Axléw,xx - Blley”
- Azs‘]é())’,x - El] Oz.xx - Aysléoz.v
=0 (12)

([zf + [yf)ﬁa - (125‘1 - [.V:V)l.// - A}’sléuo,xx - (Ay}% +Az§55)1)0.xx - (AZ:YS66 - AzsysSS)Wa.xx + ij(plélpﬁxxx
- Aysac%wﬁxx - Bysléey.xx - (AZA,V:66 + AzsanS )Qy,r - B)’sl602.xx - (Ayfé6 + A_VnZsSS )62)-
—0 (13)
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([z§ + ]yf)wv + (Iysq + [zsr)lp - AZSIGuU.xx - (Ay;zs% - Ay;ZSSS)UO,n- -

Azx166‘p‘xx - 25160 e (Az§66 - Ay.;anS)Qy,X - Ezsmezﬂ - (Ays-zxéé - Ayny\-SS)HZ,X
=0

Lty — (Ly — I

Zsq ysr)ﬁo + (Iqu + ]zsr)‘.".’u + (qu + I,z)lﬁ - Irpz‘pxx + Iz«péy,x + I,V(ﬂéz.x - Awlluom
— Aui6Uo,, — Ayp16Vo — Apa66V0, — Azip16Wo e — Aza66Wo o + A2 11V e — As266W o — B
= (Bats + Azp16) 0y, — Azios6by, — By110zs — (Bas + Ayp16)0:.. — Ayas:,
=0
L, + L0, + 1,0, Z(/)lp — B, + Az 16Uo, — By16Vo,, + (Ayz66 + Azz,55) Vo, — Bz16Wo.,
+ (Az§66 + Ayz,55)Wo, + B(ﬂ”w,xxx -

(Azp16 + Boi6)W o + Azus6V)
- 511 ezﬂ - (Byslﬁ - EZ;I())HZ.X + (Aysz.v66 JFAynanS)G
=0

Lii, — LW + 1,0, + 1,0. — Byu, . + A, 16u,,

= B, 16V0,, T (4266 + Az,55) o,
(A 266 ysvnSS)Wm +B(pll‘//nr -

( V516 + Ealé)w,xx +Ayszx66‘//,x - Blloy.xx
( 251566 +Azn,Vn55)0

- (52316 -
y 21102,xx + (Ayszséé + Aynzn55)()z
=0

The nomenclature for the stiffness constants used are

[Amun)ij Bresmii Bremi Premi Pris

where

f(s,n) € [1,20, Y5, 20, ¥, 72 4, @, (r — )]

Here (r — ¢ ) is taken equal to a.
Similarly, the inertial constants can be written as

The essential six forced boundary conditions obtained by the Hamilton’s principle, are

(L, I L h L T I

Antty, + Ay1600, + Az 16Wo, — A1V o + Ao  + B110,, + Az160, + By 0, + Ay160- = P

Ay 16t x + (Ayféé JFAszS)”O.X + (Azgy66 + Azgpyss)Wox —

A,Vs(/’lﬁlp,xx + Ay;ocGG‘rbe +B ,¢]60y,x
+ (Azsy;éG + Azszn55)9y +

E}:\-1692,x + (Ay§66 + AYnZA'SS)GZ = V‘

Azx16uo,x + (Ay:zxéé - Aysz-SS)on + (A23266 + AySZSS)WO.XX -

+ (Az266 — Ayz55)0y + B. 1602 x + (Ayzi66

=z

Azdzplélp,xx + Azaa66l//‘x + Bz:160yﬂx
—Ay,y55)0. = V.

«— Dby, + (A6 +4.255)0,

- EZ&IGWU..VX

Dj(snzj ://Qljfsn)[l 0,2 7y yZ]de}’l

(A266 + Aypss)Wo., + Azp16W v

ol1 0}’ xxx

(19)

(20)
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Apnitto, + Auisllo, + Ay01600.. + Ayas6lo, + Azip16Wo, T Azas6Wo, = AW o + As266¥
+ Bq)llgy_Ur + (Botlﬁ + Azlyq)lé)gyy X+ Azs1660y + E(pll 0 + (53(16 + Aysaz66)ez

Z,XX

-7 (22)
Biiuo,, + By 16Vo, + Bz i6Wo, — BontV o + Baiel , + D110, + B. 160, + 5110;( + Byi60. = M, (23)
By, + B, 16Vo, + B, 16Wo, — BonW o + B + 5”0}’x + B, 160, + Dy, 0, + B, 160. = M. (24)

These governing equation and the associated boundary conditions will be used for stiffness matrix for-
mulation. This is done by assuming appropriate polynomials for the displacement field based on the order
of the static part of the differential equation and substituting these back into the governing equation. In this
process certain constants can be eliminated and at the same time, certain constant become dependent
on material and sectional properties. The details of the formulation is given in the next section.

3. Finite element formulation

The finite element formulation begins by assuming the interpolating functions of appropriate order for
the six degrees of freedom. Looking at the governing equations (Eqgs. (12)—(17)), we see that the axial
displacement (u,) and the slopes about y- and z-axis (0, and 0.) require quadratic polynomial, while the
lateral and transverse displacement (v, and w,) and the twist () degrees of freedom require cubic poly-
nomials. Hence the interpolating polynomials for the six degrees of freedom can be assumed as

u,(x) = aj + arx + azx’

Uo(x) = ag + asx + agx® + arx’
Wo(X) = ag + aox + ajox’ + ajx’

Y(x) =ap +apx + ax’ + apsx’ 25)
0,(x) = aig + arx + ajgx’
0.(x) = a9 + axx + ayx?

In all, there are 21 constants to be evaluated. However there are only 12 boundary conditions (six at each
node, see Fig. 2). Hence there are nine constants which are not independent. These can be eliminated by
substituting the assumed displacement field in the governing equations (Eqgs. (12)-(17)). Here we introduce
two vectors {a} and {a,}, where {a} containing all the unknown constants and {a,} is the vector containing
the dependent constants. These can be written as
{a} - {al ,a2,04,05,dg,09,012,013,A16,A17,A19, a20} (26)
{au} = {as,a6,a7,a10, a11, 414, @15, a13, a2 }
First the assumed displacement field (Eq. (25)) is substituted in the six coupled governing differential
equation. This process enables to isolate the dependent constants {a,} from total number of constants {a}.
That is the vector {a,} is expressed in terms of vector {a}, through a transformation matrix. This can be
done as follows. On substitution of assumed displacement field in governing equation, the constants {a,}
can be expressed in terms of {a} as

Ail{a,} = 4:{a} or {a}=[Al{a} where [4]=[4] '[4] (27)
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Fig. 2. (a) Thin walled box beam element and (b) nodal displacements and nodal forces.

[41] is of size 9x 9 while [4,] is of size 9x 12. One can see that these constants are functions of material and
cross-sectional properties of the thin walled beam. The explicit form of matrices [4;] and [4,] are given in
Appendix A. The matrix [4] in Eq. (27) is evaluated by computing the inverse of matrix [4,], numerically.
On substitution of Eq. (27) in the governing equation (Egs. (12)-(17)) the assumed polynomials for the six
displacement field can be written as

u,(x)=[1 x 00 0 0 0 0 00 0 O {a}+[x> 0 0 0 0 0 0 0 0]d/{a}
5@ =0 0 1 x 0000000 0{a}+[0 2 x 000 0 0 0]4{a}
w,(x)=[0 0 0 0 1 x 0 0 0 0 0 Ofa}+[0 0 0 x> x¥* 0 0 0 O0]4{a}
W) =[0 0 0 0 00 1 x 000 0{aJ+[0 0000 x> x* 0 0]d]{a}
0,x)=[0 0 0 0 0000 1 x 0 0{a}+[0 0 0 0 0 0 0 x* 0]A4{a}
0.0)=[0 0 0 0000000 1 x{a}J+[0 00000 0 0 2]A{a)

(28)
The first task is to express the unknown coefficients in terms of the nodal displacement vector {u}, which
is ordered as
T
{u}e = {u()la U()]? W()], lﬁ]? 0y17 021) u027 Uoz7 W()z) ‘112) 0}’27 922}

where u,,, t,,, Uy, U,, and w,,, w,, are the axial, lateral and transverse displacements at two nodes while y,,
Vs, 0, 0,, and 0., 0, are the respective slopes at the two nodes. This is done by substituting x = 0 and
x = L in Eq. (28), which can be written in matrix form as

{u}, = [R{a}

Inverting the above equation, we get

{a} = [R] {u}, = [B]{u}, (29)
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Using the above equation in Eq. (28), we can write all the displacement field in terms of its nodal quantities,
which constitute the shape function of the displacement field. Thus

{up = INH{u},, [NI=[Ne Noo Ny Ny Ny, Noj (30)

where [N, N, N, N, Ny Ny] are the shape functions corresponding to the six displacement fields.

Next the six force boundary condition (Egs. (19)—(24)) are considered and expressed in terms of nodal
force quantities. That is at x=0, we have P(0)=—P;, V,(0)=—V,, V.(0)=—-V,, T(0)=-T,
M,(0) = —M,; and M.(0) = —M,; and at x =L, we have P(L) =Py, V,(L) = Vo, V.(L) =V, T(L) = D>,
M,(L) = M,, and M.(L) = M,,. Substituting these in Eqgs. (19)-(24), we can write the nodal force vector
as

{F} =[Cl{a} (31)
Substituting for {a} from Eq. (29), we can write
{F} = [Cl[B{u}, = {F} = [K{u}, (32)

where [K] is the exact stiffness matrix, that is derived from the polynomials which exactly satisfy the
governing differential equation.

The consistent mass matrix is formulated using the material dependent shape functions (Eq. (30)).
That is

)= | / pIN|T[V] dnds (33)

Substituting Eq. (30), expanding and integrating, the mass matrix can be written as
L

M) =1, / TN d + (I + 1) / (NI + N TV by — (L — T,,) / (N[,

L L

VTN e (L + L) / (INTING] + [N V] e+ (12 + 1) / N, [Vy] dx

L / NG, T[N, dx + 1, / (No. T[N ) dx + 1, / (Vo] [V + (V][N d

L L

+ / (N0, "IN, + VTN ) dx + Ty / (N, "IN + (N[N, ]) e + T / (N, I[N ]

L

— Vo, TNy dx + 1y, / (Vo] Ny ] — [N TN dx — 1, / (VT [Vy.)

L
T T
SRR LA LS (34)
Depending on the geometry of the cross-section, many of the constant in the mass matrix formulated above
vanishes resulting in a simpler form.

4. Numerical experiments
The formulated element has super convergent property as it uses exact solution to the governing

equation as its interpolation function. Hence, for point loads, one element between any two discontinuities
is sufficient to capture the exact response for static analysis. This results in substantial reduction in the
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system size. For dynamic analysis, consistent mass matrix formulated based on the above interpolation
functions are used. As a result, for a given discretization, the accuracy of the present formulation is ex-
pected to be superior compared to elements formulated based on conventional polynomial approximation.
This is because, the stiffness of the structure is exactly represented even though the inertial distribution is
approximate. Hence, good accuracy in dynamic analysis can be expected from this element using smaller
system sizes. The performance of the formulated element is examined for static, free vibration and wave
propagation problems.

Static and dynamic analyses of different box-beam, I-beam and rectangular flat beam section of
increasing complexities are performed. The beam configurations used in the experimentation is chosen to
have different material properties and ply layup sequences. Static and free vibration results are compared
with experimental, analytical and numerical results available in the literature.

The performance of the element for wave propagation problems can be judged by it’s ability to capture
higher order modes with very small system size. Hence, the numerical experiments for dynamic analysis is
so designed that, first the ability of the formulated element to accurately capture higher order modes
is examined before it’s use in wave propagation problems, where the frequency content of forcing function
is usually very high. The main aim of this numerical experiment is to show the effect of shear deformation
(in FSDT) on the overall transverse response in a box beam. In addition, simultaneous existence of various
propagating modes is graphically captured.

4.1. Static analysis

Static analysis is done for AS4/3501-6 graphite-epoxy box beams with three different symmetric and
antisymmetric ply layup sequences to test the performance of the formulated element. The response of these
cantilever beams of length 0.762 m. under unit static loads at the free end were experimentally investigated
by Chandra et al. (1990). The material properties and ply layup are provided in Tables 1 and 2 respectively.
The symmetric configuration [f]g exhibit bending-torsion and extension-shear coupling while the anti-
symmetric configuration exhibit extension—torsion coupling. Figs. 3 and 4 show the induced twist due to tip
bending load and induced bending slope due to tip torque of a [45]s beam respectively, as a function of
spanwise coordinates. In both the cases, the present result correlates well with experimental data and the tip
deflection converges using just one element confirming the exactness of the stiffness matrix. In Fig. 3, the
result from the formulated element is also compared with the finite element analysis VABS by Cesnik and
Hodges (1997) and analytical solutions by Berdichevsky et al. (1992) and Smith and Chopra (1991). In Figs.
5 and 6 the effective torsional stiffnesses are presented for symmetric and antisymmetric sections respec-

Table 1
Properties of AS4/3501-6 graphite-epoxy ([0]g and [0],,) box-beams

Material properties

Eyy, psi (GPa) 20.59x 106 (141.9)

E>, psi (GPa) 1.42x10° (9.78)

G2 = Gy3, psi (GPa) 0.89x10° (6.13)

Gy, psi (GPa) 0.696x 10° (4.80)

Vi2 0.42

0 0.05224 1b/in® (1449 kg/m?)
Dimensions

Width (= 2b), in. (mm) 0.953 (24.21)

Depth (= 24), in. (mm) 0.53 (13.46)

Ply Thickness (= ¢), in. (mm) 0.005 (0.127)

No. of ply in each side 6
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Table 2

Ply layup of AS4/3501-6 graphite-epoxy ([0]g and [0],,5) box-beams
Beam configuration Top flange Bottom flange Left web Right web
Symmetric [0]g
[15]s [15]6 [15]6 [15/-15]5 [15/-15]5
[30]s [30]s [30]s [30/-30]5 [30/-30]5
[45]s [45]6 [45]¢ [45/-45]3 [45/-45];
Antisymmetric [0] 5
[15]as [15]s [-15]¢ (15 (=151
[30]as [0/30]5 [0/=30]5 [0/30]5 [0/-30]5
[45]as [0/45]5 [0/-45]5 [0/45]5 [0/-45]5
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Fig. 3. Induced twist of [45]s box-beam due to unit tip bending load.

tively. Comparisons provided with experimental results and analytically evaluated cross-sectional stiffnesses
by Jung et al. (2002), show good correlation with results generated from the single formulated element.

Cantilever graphite-epoxy I-beam having material properties as given in Table 1 (except G»; = 0.89 x 106
psi) and sectional dimension of 1.0 in. x 0.5 in. are experimented for static response. Ply layup sequence is
[(0°/90°)3/(15°),]; for both the flanges, with 15° being the fiber orientation at the top two plies and [(0°/90°)4],,
for the web. This I-beam is well studied both experimentally and theoretically as open section cases and
details of the configuration are given in Chandra and Chopra (1991). These beam has warping restrain effect
at the ends and exhibit substantial increase in torsional rigidity according to Vlasov effect. Fig. 7 shows the
tip twist due to unit torsional load applied at the tip and the induced twist due to unit bending load at tip.
Comparisons are provided with the analytical results presented by Chandra and Chopra (1991) and
numerical results provided by Yu et al. (2002) using VABS. Good correlation is observed in both the cases.
The tip twists obtained using classical or St. Venant’s theory are presented to show the predominant effect
of restrained warping on the torsional behavior of open cross-section beams.
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Fig. 5. Effective torsional stiffness of symmetric [0]g box-beams.

4.2. Free vibration analysis

Natural frequencies of a rectangular flat graphite epoxy beam of 30° ply orientation with bending
torsion coupling are evaluated and compared with available experimental and theoretical results in Table 3.
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The beam has a width of 12.7 mm, thickness 3.175 mm and length 190 mm. Material properties are given in
Table 4. ST and TS represent spanwise bending-torsion mode with bending and torsion being predominant
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Table 3

Natural frequencies (Hz) of 30° graphite epoxy rectangular flat beam
Mode Abarcar and Cuniff (1972) Suresh and Hodges et al.  Stemple and  Jung et al. Present

Experiment Analysis Nagaraj (1991) Lee (1989) (2001)
(1996)

1 (ST) 52.7 52.7 52.6 49.0 53.8 52.7 52.8
2 (C) - - - 195.6 214.1 210.7 210.0
3 (ST) 331.8 329.3 329.1 307.9 3359 329.2 329.5
4 (ST) 924.7 915.9 918.0 869.1 941.1 918.6 916.1
5(C) - - - 1215.2 1315.7 1320.4 1263.9
6 (ST) 1766.9 1767.0 1777.3 - 1707.0 1762.9 1756.0
7 (TS) 1827.4 1896.5 1891.6 1660.9 1881.1 1836.6 1858.0
8 (TS) 2984.0 2901.4 2929.9 - 3154.1 2944.6 2909.6

ST and TS represent spanwise bending-torsion mode with bending and torsion being predominant respectively and C is the chordwise
bending mode.

Table 4
Material properties of graphite-epoxy rectangular flat beam

Material properties

En, psi (GPa) 18.73x 10° (129.1)

En, psi (GPa) 1.364x 10° (9.408)

G2, psi (GPa) 0.7479%x 10° (5.157)

Gos, psi (GPa) 0.3686x 10° (2.541)

Gas. psi (GPa) 0.6242 % 10 (4.304)

Vi2 0.3

0 0.056 1b/in® (1551 kg/m?®)

respectively and C is the chordwise bending mode. Free vibration results for the beam was obtained
experimentally by Abarcar and Cuniff (1972), analytically by Abarcar and Cuniff (1972) and Suresh and
Nagaraj (1996) and a finite element analysis by Stemple and Lee (1989). Jung et al. (2001) evaluated the
cross-sectional stiffness analytically and used 20 degrees of freedom beam elements to obtain the dynamic
characteristics. Results presented by Hodges et al. (1991) was derived from finite element cross-sectional
model using NABSA (Non Homogeneous Anisotropic Beam Section Analysis) and beam finite elements
for lengthwise discretization. The present results obtained using only 10 elements with a total of 60 degrees
of freedom, show good correlation with the available results from the literature.

Chandra and Chopra (1992) performed free vibration experiments for non-rotating AS4/3501-6 graphite
epoxy box beams ([0]5 and [0],5) whose properties are described in Tables 1 and 2, respectively. In Fig. 8 the
fundamental frequencies of [15]as, [30]as and [45]as are compared with above experimental results. The
analytical results were evaluated by Chandra and Chopra (1992) using Galerkin’s method. The present
results obtained with three formulated beam elements correlate well with available results.

Next, the free vibration behavior of the extension—torsion coupled box beam is investigated for which
the material properties and dimensions given in Table 5 is used. The beam has an antisymmetric config-
uration with [20/-70/20/-70/-70/20] ply layup in each wall. Table 6 gives the bending modes and first
two extension—torsion modes frequencies for this beam using the formulated element. The results are
compared with those presented by Hodges et al. (1991) using NABSA and TAIL for cross-sectional
stiffness analysis. S, C and TE are the spanwise bending, chordwise bending and torsion—extension modes
respectively. Frequencies obtained using TAIL requires 16 elements. The present results show good cor-
relation.



M. Mitra et al. | International Journal of Solids and Structures 41 (2004) 1491-1518

40

35+

w
o
T

Fundamental Frequencies (Hz)
& 3
T T

i
o
T

Il Present

[ Experiment (Chandra and Chopra 1992)
[ Analysis (Chandra and Chopra 1992)

[15]as

[30Ias

[45]xs

Fig. 8. Fundamental frequencies of antisymmetric [0],5 box-beams.

Table 5

Properties of T300/5208 graphite-epoxy box-beam

1505

Material properties
Eyy, psi (GPa)

Ey, psi (GPa)

G2 = Gi3, psi (GPa)
Gy, psi (GPa)

21.3x 10° (146.79)

1.6 10° (11.03)
0.9x 10° (6.20)
0.7% 105 (4.82)

Vi2 0.28
p 0.05764 Ib/in® (1599 kg/m?)
Dimensions
Width (= 2b), in. (mm) 1.32 (33.53)
Depth (= 24), in. (mm) 0.66 (16.76)
Ply Thickness (= ¢), in. (mm) 0.0055 (0.1397)
Length in. (mm) 100 (2540)

Table 6

Natural frequencies (Hz) of T300/5208 graphite epoxy box-beam
Mode Hodges et al. (1991) Present (No. of Elements)

NABSA TAIL 2 3 5 10 15 20

1(S) 3.00 3.09 3.05 3.05 (0.0%) 3.05 3.07 3.08 3.09
2(C) 5.19 5.74 5.57 5.56 (-0.18%)  5.56 5.57 5.58 5.59
3(S) 19.04 19.64 19.25 19.17 (-0.42%) 19.12 19.19 19.28 19.36
4 (O 32.88 36.39 35.05 34.87 (-0.52%) 34.78 34.81 34.88 34.98
5(S) 54.65 56.36 65.12 54.04 53.62 53.65 (0.06%) 53.89 54.12
6 (C) 93.39 103.29 118.58 98.07 97.13 96.90 (-0.24%)  97.08 97.34
1 (TE) 180.32 177.23 178.76 176.25 174.98 174.44 (-0.31%) 174.34 174.30
2 (TE) 544.47 535.15 606.68 576.44 542.27 527.62 524.93 (-0.51%) 523.98

S, C and TE are the spanwise bending, chordwise bending and torsion—extension modes respectively.
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As stated earlier and validated by the static analysis examples, the present formulation derives the exact
elemental stiffness matrix using higher order shape functions. Though the mass modeling is not exact and a
consistent mass matrix using the derived interpolating polynomials is formulated for dynamic analysis, the
present beam element is expected to exhibit improved convergence. In Table 6 the natural frequencies
obtained corresponding to the number of elements used are also presented, to illustrate the super con-
vergent properties of the formulated element. The percentage values given in the parenthesis give the
change in the frequencies due to mesh refinement. It is observed that the frequencies corresponding to
the first four bending modes nearly converges after two elements with a maximum difference of 0.52% at the
fourth frequency obtained using three elements.

Next, the ability of the element to capture higher modes with smaller system size, is investigated. This is
very crucial for the wave propagation analysis (treated next), where the frequency content is very high and
as a result all the higher order modes participate in the response.

An asymmetric graphite epoxy box beam configuration ([0/90]5) having material properties and
dimensions as in Table 1 is used. The results are compared with 3-D finite element simulation, which is
given in Table 7. The beam has a ply orientation of [03/90;] and [905/05] in top and bottom flanges and
similar in left and right webs. Asymmetry in ply layup sequences produces extension shear coupling. The 3-
D finite element results are obtained using ANSYS general purpose program where eight noded brick
element is used to model the structure The model has a total of 15128 nodes and 3x 15128 degrees of
freedom. The relative difference in the 14th and 15th frequency obtained using a finer 3-D mesh of 20008
nodes and 3x 20008 degrees of freedom is 0.5%. Thus no further mesh refinement is done. The system size
required by the present element is 30 x 6. Frequencies with and without transverse shear are presented. The
EBT (without transverse shear) formulation is derived from present FSDT (with transverse shear) by
considering the stiffness constants i.e. 455 (see Eq. (18)) corresponding to transverse shear to be infinite.
Bending and extensional frequencies shows good correlations and the effect of transverse shear is more
prominent at higher frequencies.

4.3. Wave propagation problem

In wave propagation the frequency content of the exciting force is very high. The response of the
structure to such loading extracts the participation of all the higher modes. Smaller element size is required
to match the small wavelengths at higher frequencies. This results in finer finite element modeling producing

Table 7

Natural frequencies (Hz) of AS4/3501-6 graphite epoxy [0/90]5 box-beam
Mode Present 3-D FEM

With transverse shear Without transverse shear

1(S) 31.02 31.06 30.99
2 (0 49.17 49.34 49.19
3(S) 192.55 194.57 187.22
4 (O 301.63 308.75 298.13
6 (S) 531.18 473.02 494.34
7 (C) 817.54 862.40 794.24
11 (S) 1642.38 1757.35 1680.8
12 (E) 2107.28 2107.33 2111.7
14 (S) 2381.89 2619.31 2349.4
15 (C) 2409.78 2771.02 2418.0
16 (S) 3220.05 3321.34 3198.0

S and C are the spanwise and chordwise bending modes respectively.
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large system size. The amount of literature available for such wave propagation problems specially for box
beams is very scarce and to the author’s best knowledge can be said almost non-existent. In such situation,
it is necessary to examine the ability of the element to capture all the higher order modes in a model having
smaller system size. This was done in the previous example of the free vibration analysis section. The main
objectives here are the following: (1) To study the fundamental aspects of wave propagation in shear
flexible box beam as opposed to elementary box beam. (2) To graphically capture the various propagating
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Fig. 9. (a) Impact load and (b) Fourier transform of load.
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wave modes in a symmetric/antisymmetric box beam due to either bending-shear-torsion coupling or
extension-shear-torsion coupling. This feature, coupled with some of the fundamental aspects of wave
propagation in a shear flexible box beam, will enable us to ascertain the accuracy of the solution.
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Fig. 10. Longitudinal tip velocities of [0/90]a, [45]s, [15]as box-beam due to tip impact load.
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Fig. 11. Transverse tip velocity of a [0/90], box-beam due to tip impact load.
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4.3.1. Cantilever beam under tip impact load

Numerical experiments are performed on cantilever box beams with different ply orientation both with
and without considering the transverse shear effects to study the difference in wave propagation charac-
teristics of EBT and FSD beams.
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Fig. 13. Transverse tip velocity of a [15]as box-beam due to impact load.
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Three Graphite epoxy cantilever box beams [0/90]4, [45]s, [15]as With material properties and dimensions
as in Table 1 are used for the numerical experiment. The exciting impact load shown in Fig. 9 has an
amplitude of 4.4 N and duration is of 50 ps with a very high frequency content of 44 kHz. The beams are
modeled with 1000 elements with 1000 x 6 degrees of freedom, where 6 is the band width. Newmarks time
integration is used with time increments of 1 ps.

Fig. 10 shows the longitudinal velocities measured at the tip due to impact load applied also applied at
tip in longitudinal direction. The effect of neglecting transverse shear in [45]s decreases the amplitude of
initial response to the load and also increases the velocity with the first reflection occurring around 40 ps
earlier than that with transverse shear while in [0/90]a, [15]as the effect of neglecting transverse shear does
not produce any difference This observation is justified as [45]s beam has a prominent extension shear
coupling. Also, it is seen that longitudinal waves in [0/90]4 and [15]as beam travel much faster than [45]s
beam.

Figs. 11-13 are the transverse velocities at tip due to impact loading applied at tip in transverse direction
of [0/90]a, [45]s, [15]as beams respectively. Neglecting transverse shear increases the velocity in all cases and
the effect is most prominent in [15]as. Thus it can be concluded from the observations that FSDT predicts
lower wave speeds than EBT.

4.3.2. Response to modulated sinusoidal pulse

The aim of this experiment is to graphically capture various propagating modes in a box beam.
Depending on the ply orientation and stacking sequence, various elastic coupling are exhibited in a box
beam. The governing equation for the box beam, derived in Section 2 of this paper, showed that it is fourth
order in transverse displacements and twist, third order for slopes and axial displacement. Hence waves in
such systems are necessarily dispersive, that is the pulse changes its shape as it propagates. In order that all
the propagating modes are captured graphically, a pulse that travels non-dispersively is required. For this
purpose, a modulated sinusoidal pulse is used. Such a pulse has zero energy at all frequencies other than the
frequency at which the sine pulse is excited. Such pulses are extensively used in structural health monitoring
studies (Nag et al., 2002; Valdés and Soutis, 2001; Lin and Yuan, 2001). As stated earlier in Section 1,
further refinement in the present beam formulation by using improved cross-sectional models are required
prior to such applications. This sinusoidal pulse modulated at a high frequency is allowed to propagate
through an infinite beam (Fig. 14). The beam is considered infinite in a sense that the boundary reflections
can be neglected within the time of observation. The graphite epoxy box beams [0] ,s and [0]g with material
properties and dimensions as in Table 1 are used for this experiment. The modulated pulse is applied at
a point C in axial and transverse directions and the axial and transverse velocity are observed at a point D

Z
_ - L @ - —_—
c [5)
o | L | oc

Fig. 14. An infinite box beam to observe non-dispersively propagating modes.
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on the infinite beam. The propagating length L is the distance between C and D. The beams of length 7.62
m are modeled with 5000 elements giving a system size of 6 x 5000. In all the cases responses are provided
for beams with three ply orientation to show the effect of ply angle on the various coupling.

In a symmetric ply configuration [0]g, the extension is coupled with shear in chordwise direction. Thus
the axial velocity due to axial load will show two propagating modes. Fig. 15 shows the axial velocities for a
modulated sinusoidal pulse with a modulated frequency of 50 kHz applied in axial direction. In the figure,
the first blob is an axial mode, the second is the shear mode. The effect of shear coupling is more in [30]s and
[45]s beam. Similarly an axial excitation to an antisymmetric ply configuration [0] 4 gives extension torsion
coupling. This is clearly seen in Fig. 16 for the same modulated sinusoidal pulse. The first blob is the axial
mode while the second is the torsional mode. It is seen that extension—torsion coupling is strong only in
[15]as here. The propagating distance is L = 0.5334 m for both the above cases. In Figs. 17 and 18 the
transverse velocities due to a sinusoidal pulse with a modulated frequency of 110 kHz applied in transverse
direction is shown for symmetric and antisymmetric configurations respectively. The propagating lengths
are L = 1.2192 m for [0]q and L = 0.9144 m for [0],s. [0]5 ply orientations has a torsion, flexure and shear
coupling and hence shows three propagating modes in Fig. 17. Similarly, four propagating modes can be
visualized for [0],q beam configuration having spanwise and chordwise shear and flexural coupling. From
Fig. 17, we see the bending-torsion coupling is very high in [45]s while for [15]s it is less.

5. Conclusion

This paper present a generic thin walled composite beam element of arbitrary cross-section with open or
closed contour. The refined element developed has super convergent property and is free from shear
locking. The user does not have to know the situation where the shear deformation is predominant as the
same element can be used for all situations. The formulation accounts for the non classical behaviors
including elastic coupling, transverse shear and restrained torsional warping. Modeling of transverse shear
deformation is based on FSDT and Vlasov theory is used for modeling of torsional warping. The element
formulated is validated with various experimental, analytical and numerical results available both for static
and dynamic cases. Various box beams and flat rectangular beam with different material properties and ply
layup sequences are used as test cases. In all cases good correlation has been observed. Wave propagation
analysis performed establish that effect of transverse shear is very pronounced at higher frequency ranges
and produces a non-negligible decrease in wave velocities particularly in transverse direction. The various
propagating coupling modes are graphically captured. The formulated beam element can be further refined
by improving the cross-sectional stiffness modeling to get responses more comparable to 3-D finite element
results. This refinement may help in more accurate high frequency or wave propagation analysis for various
applications.

Appendix A

The non zero elements of the matrix [4;] and [4,] in Eq. (27) are given as

Ay, =An, A, =Aye A, =Aze Ay = Aate
Ay, = =34,1, A1, =Bu, 4, =B,
Aiy = Ayae, Ay = (Ayes +A2ss),  Aiy = (Azyos — Azyss), Aty = Ayass

A127 = _3A,\iywl6a Alzx = Bysl67 A129 =B 16

=
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Ay, = 3(’4}{366 +Az§55>> Ay = 3(A25y366 - AZ;_V:55)7 A1y, = 34,466

A138 = (Azsys66 +Azs2n55)v A139 = (Ay_366 +Azsyn55)

Ay, = A6,

A145 = Az_vzx66a

Ary = (Azyos — Azss), Ay = (A2ge — Ayss)

A147 - _3Azs(p167 A148 = BZSIG) A149 = EZJM)

Aig, = 3(Az§66 +Ay§55)’ Argg = 342066, A1, = —34411

A = (Azgsé

Ay, = Auts,

—Azpss),  Argy = (Azyes — Ay,yss)

A, = Ayuss, Aty = 3dyot6r Al = Azues

Ay = 3Azs</’167 Are = Apes, Argg = (3116 +A2.c<ﬂ16)v Ay, = (5116 +Ays</)16)

Ai, = 34,066, Aty = 3Az066, Ary, = 3Apees Aty = Azuss, Aty = Ayues

Ay, = B,

A, = By16, Arg = Bi6s Aty = (Az016 + Bato)

Ay, = =3By, Ay, =Dy, Ay, = Dy

Ay, =By,

Ay, = By 165 Ay, = B 16, Ay = (AysthG +§o<16)

Ary, = _3§q:117 Ary = 511; A1y =Dy,

All other 4, = 0.

A219 = _O-SAZSI& A2111 = —O.SA},SM

Ay = —0.5(A. 66 + Azyzyss), Aoy, = fO.S(AySzGG +A.,,55)

Az, = _O'S(Az§66 - Aznys55)a Ay, = _O'S(Azayx66 - AyA-Z;,55)

Az = —0.54_466, Az, = _O'SAyx&ﬁé

Asy, = 0.54. 06, Aagy = 0.5(Az66 + Azz55),  Azgg = 0.5(A266 + Azyps5)

Aree = 0.54 466

sy = 0.5(Azg6 + Azss), Az, = 0.5(Asp66 + Azpiss),  Aagy, = —0.5(By16 — B 1)

Ar, = 0.54,16, Aoy, = 0-5(’4,\{366 +A2:y,155)7 Ay = O'S(Az§66 - AysynSS)

Ay = 0.54,, 466

Azw = O'S(Azsyv% +Aznyn55)v A2910 = O'S(Byclé - 52516)7 A291| = O'S(Azsy.v% + Ay§55)

All other 4,, = 0.
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